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Reliability of rank order in sampled networks
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Abstract. In complex scale-free networks, ranking the individual nodes based upon their importance has
useful applications, such as the identification of hubs for epidemic control, or bottlenecks for controlling
traffic congestion. However, in most real situations, only limited sub-structures of entire networks are
available, and therefore the reliability of the order relationships in sampled networks requires investigation.
With a set of randomly sampled nodes from the underlying original networks, we rank individual nodes by
three centrality measures: degree, betweenness, and closeness. The higher-ranking nodes from the sampled
networks provide a relatively better characterisation of their ranks in the original networks than the lower-
ranking nodes. A closeness-based order relationship is more reliable than any other quantity, due to the
global nature of the closeness measure. In addition, we show that if access to hubs is limited during the
sampling process, an increase in the sampling fraction can in fact decrease the sampling accuracy. Finally,
an estimation method for assessing sampling accuracy is suggested.

PACS. 89.75.Hc Networks and genealogical trees – 89.75.Fb Structures and organization in complex
systems

1 Introduction

In recent years, there has been great interest in examining
the properties of complex networks such as the World-
Wide Web, the Internet, and social and biological net-
works [1]. Recent research on the networks reveals that
many networks have scale-free structures that possess a
right-skewed degree distribution. This power-law degree
distribution guarantees a noticeable existence of nodes, or
hubs, that have a very large number of connections com-
pared with the average node. The essential role of hubs in
networks is widely recognised in the contexts of immuni-
sation in epidemic spreading [2], the formation of social
trends [3], finding drug targets on biological molecules [4,
5], and optimal path-finding strategies [6]. For example,
the study of the spread of viruses on the Internet shows
that targeting immunisation on hubs drastically reduces
the occurrence of endemic states, even with a very low im-
munised fraction, whereas uniform immunisation does not
lead to a drastic reduction in the infection prevalence [1,
2]. For drug target identification in biological systems, the
likelihood that removal of a protein will be lethal corre-
lates strongly with the number of connections to that pro-
tein in the protein-protein interaction network [5].

In these examples, accurate identification of the im-
portant nodes, i.e. hubs, is an efficient way to resolve the
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specified problems. Such identification, however, requires
that the ranks of the individual nodes are known, based on
their importance and contribution to the entire network.
In targeted immunisation on hubs, the more accurate a
policy is at identifying the ranks, the smaller the number
of necessary cures [7]. In real situations, however, only
part of the information on the underlying networks can
be exploited, due to severe physical and economical con-
straints [6,8–12]. For example, a survey of relationships
among participants has to be conducted in order to con-
struct a social network, but the collected network data
might be incomplete, since surveys usually target only a
limited sample of the whole population. Therefore, the
statistical properties of a network must frequently be as-
sessed without complete knowledge of global information
on the entire network. Nevertheless, the sampling prob-
lem in complex networks has not yet been extensively ex-
plored [10,12,13], despite the substantial interest in the
community of social network analysis [8].

Given that only partial information on a network can
be obtained, it is worth investigating how accurately the
importance of a node, based on only partial information,
reflects the actual importance of the node in the original
network. For successful epidemic control, it is important
to determine whether or not the hubs identified as critical
from the incomplete data remain so even after adding sup-
plementary data [14]. The study of rank reliability in sam-
pled networks can also be applied to many technological



110 The European Physical Journal B

and biological systems, and avoids possible artifacts de-
pending on a specific numerical scale of data (whereas
stretching or compressing the scale does not alter a rank-
based result).

In the present work, we analyse the Barabási-Albert
(BA) model as the prototype example of a scale-free net-
work [1]1, which allows us to clearly discriminate the con-
tribution of the power-law degree distribution to the sam-
pling effect from the contribution of additional specific
biases that appear in other networks. Furthermore, to
consider realistic effects that are disregarded in the BA
model, we also analyse several real networks, such as the
Los Alamos e-Print Archive coauthorship network [15],
the Internet AS [16], and protein-protein interaction net-
works [5,17]. We concentrate only on cases where the ac-
cessible information on the networks is limited to the con-
nectivity between randomly sampled nodes, although in
reality, there are other kinds of allowable information, in-
cluding the connectivity from snowball sampling, and that
from randomly sampled links [13]. Snowball samples con-
sist of identified nodes to which all linked nodes are then
used to refer to other nodes, and are usually employed by
Web search engines. Randomly sampled links describe the
randomly gathered connectivity between nodes, e.g. in the
case of poorly gathered contact information between pa-
tients. It is expected that snowball sampling provides rare
sampling biases with literally conserved topologies during
the sampling, while the possible nontrivial results from
randomly sampled links can be sufficiently analogous to
those from randomly sampled nodes with some correspon-
dence between them [13]. Thus, the focus on randomly
sampled nodes could be considered a reasonable step to-
wards investigating the network-sampling problems, al-
though the study of only randomly sampled nodes here
has limitations for understanding more specific problems
in real situations. In this regard, the possible deviations
between our results and reality could be further reduced
by additional investigation of different sampling schemes.

2 Measured quantities

In sampled or entire networks, individual nodes can be
properly ranked according to their importance or pres-
tige [18], like degree. With the set of sampled nodes, we
first define a measure for the rank correlation between
the sampled nodes and the nodes in the original network,
denoted by τ , which is a variant of Kendall’s Tau [19], rep-
resenting how faithfully the rank order is preserved in the
sampled network. For an arbitrary pair of sampled nodes
{i, j}, the nodes have assigned importance, like degrees,
such as {ki, kj} in the sampled network and as {ko

i , k
o
j }

in the original network. If ki < kj (ki > kj) and ko
i < ko

j

(ko
i > ko

j ), or ki = kj and ko
i = ko

j , we consider that the
pair is then ordered similarly in the sampled and origi-
nal networks. Otherwise, it is regarded as ordered dissim-
ilarly. To quantify the preservability of rank order, the

1 Performing the analysis on the configuration model [23]
instead of the BA model does not alter the current results.

dominance of pairs ordered similarly in both the sampled
and original networks is normalised by the total number
of pairs that are considered in the calculation, through
τ = (N+ − N−)/(N+ + N−), where N+ is the number
of pairs ordered similarly for sampled and original net-
works, and N− is the number of pairs that are ordered
dissimilarly. τ can have a value from −1 to 1, indicating
complete disagreement and full agreement, respectively.
Without any tied ranks, if the ranks are more preserved
in sampling than expected by random shuffling, τ is posi-
tive. For the probability p that an arbitrary pair is ordered
similarly, we can obtain the relationship p = (τ + 1)/2.

Because the statistical properties of many real net-
works follow a universal characteristic like a power-law
distribution, their preservability in sampled networks has
been of basic interest in previous studies [10,13]. These
statistical properties, however, are rarely affected by in-
terchanging the prestiges of nodes. Hence, it is worth
comparing the preservability of these individual-prestige–
insensitive properties in sampled networks to that of the
individual-prestige–sensitive properties such as τ . There-
fore, we introduce another complementary measure, ρ,
which represents the similarity between two probability
distributions of centrality — one from sampled nodes and
the other from the original network — where the latter
one obeys a power law. First, we obtain the cumulative
distribution of variable k, PS(k) from the sampled nodes,
and PO(k) from the original network. Using ki of the ith
sampled node, we find ko

i , satisfying PS(ki) = PO(ko
i ),

and calculate the Pearson correlation ρ between ki and
ko

i for i = 1, 2, . . . , N , where N is the number of sam-
pled nodes. ρ can achieve its maximum value of 1 if ki is
proportional to ko

i . This means that when PS(k) ∝ k−α

and PO(k) ∝ k−β, ρ can achieve its maximum value of
1 if α = β, i.e. in the case of identical power-law distri-
butions. By applying proper normalisation, we transform
the measure ρ so as to take a value from 0 to 1 in its
significant range2. ρ gives the preservability of probabil-
ity distributions rather than that of the node rank, thus ρ
can have a large value under the similar probability distri-
butions, even if the ranks themselves are severely altered.
In a practical sense, it is possible to directly evaluate the
exponent difference of the power-law distribution between
sampled and original networks, and the detail of the re-
sults exhibits some notable properties, including a slight
overestimation of the exponents during the random sam-
pling [13]. For the degree distribution of the BA model, a
sampling overestimation of the exponent by a factor of 1.2
corresponds to ρ = 0.8. It should be noted that an isolated
node, which had no links to the other connected sampled
nodes, was excluded in the calculation of τ and ρ. We can
easily apply these measures to other quantities, such as
betweenness centrality, as will be shown below.

2 To this end, we calculate the Pearson correlation ρth be-
tween ki and ko

i as if PS(k) is a simple linear function of k. We
finally obtain the value of ρ as ρ → (ρ− ρth)/(1− ρth). There-
fore, ρ becomes positive if the probability distribution from the
sampled nodes resembles that from the original network more
than a simple linear curve does.



P.-J. Kim and H. Jeong: Reliability of rank order in sampled networks 111

Fig. 1. The horizontal axis represents the sampling fraction
(the number of sampled nodes divided by the number of to-
tal nodes), while the vertical axis represents the calculated τ
and ρ at each sampling fraction. We use the BA model with
30 000 nodes and average degree of 8.

3 Simulation and results

In this paper, we rank-order individual nodes using the
three centrality measures of complex networks: degree, be-
tweenness, and closeness, in order to calculate τ [15,20]3.
We also calculate ρ for degree and betweenness, based
on their power-law statistics [1,21]. Using randomly sam-
pled nodes, Figure 1 displays the result for the BA model,
which reflects results typical for other real networks with
regard to the qualitative distinction between τ and ρ. In
Figure 1, as the sampling fraction increases, τ grows grad-
ually while ρ grows quickly and saturates at 14. It has been
verified that the early saturation of ρ is due to the overall
proportional relationship between the centrality measure
obtained from the randomly sampled nodes and that from
the original networks [13]. On the other hand, the contin-
uous and rather slow growth of τ indicates the sensitivity
of individual-level prestige to the sampling, especially for
the low rank nodes, as will be presented below.

Interestingly, the contribution of an individual node to
the value of τ is not uniform over all nodes, and strongly
depends on the rank of the node. To examine this prop-
erty in detail, we divide the sampled nodes into subgroups
according to their individual ranks in the sampled nodes.
For example, in the case of degree-based ranks, each node
would belong to one of 10 groups — the highest 0 ∼ 10%,
10 ∼ 20%, . . . , 90 ∼ 100% ranks — in descending or-
der of degree. To obtain the contribution to τ made by
each group, we calculate τ over pairs of nodes {i, j} where
the ith node is a member of the given group, and the
jth node is a member of any group. Figure 2a illustrates
the result for the BA model; the groups of higher-ranking

3 The closeness of the ith node is defined as the average of
the reciprocal distances from the ith node to all other nodes.

4 Randomly sampled nodes are inevitably composed of sev-
eral disconnected clusters. Nonetheless, the main difference be-
tween τ and ρ is still valid even if we consider only the largest
component from these clusters.

Fig. 2. The horizontal axis represents the groups according to
their constituting ranks in sampled nodes, while the vertical
axis represents τ for each group. (a) 40% sampled from the
BA model with 30 000 nodes and an average degree of 8; (b)
the same condition as (a) in the Erdös-Rényi model; (c) τ
calculated without counting the pairs in tied prestiges from (a);
(d) increased sampling fraction with 60% from (c).

nodes have large τ ’s, indicating that the higher-ranking
nodes of the sampled nodes provide better characterisa-
tion of their ranks in the original networks [11]. This point
will be universally carried in scale-free networks, because
the nodes of large degree hardly face the shuffling of their
ranks in sampling due to their relatively small population.
In the Erdös-Rényi model, the intermediate ranks com-
prise a greater proportion of the population than either
the high or low ranks. It is expected that τ would reach
the minimum value with intermediate ranks, as observed
in Figure 2b.

From observations in the BA model, we have found
that τ ’s for betweenness and closeness have larger values
than τ for degree, except in a few of the highest rank
groups. Even in these highest rank groups, τ for degree is
comparable to the other τ ’s, and does not dominate them.
In an attempt to explain the smallness of τ for degree in
most groups, one might consider the discreteness effect of
degree, e.g. the majority of the nodes would possess a de-
gree of 1 in a small sampling fraction. This severe discrete-
ness could hide the original ordinal information between
the nodes, thus leading to a smaller value of τ . Neverthe-
less, the discreteness effect does not sufficiently explain our
observation. To clarify this point, we calculate τ while ex-
cluding the pairs of sampled nodes in tied prestiges, which
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Fig. 3. (a) Rank vs. τ in the 30% sampled nodes from the
Archive coauthorship. (b) Individual degree vs. betweenness in
the Archive coauthorship. (c) Individual degree vs. between-
ness in the highest 30% of highly correlated degree and be-
tweenness. (d) Rank vs. τ of the nodes from (c).

reduces the discreteness effect. Figures 2c and 2d show the
results of sampling fractions of 40% and 60%, respectively,
but well represent the generic consequence along all sam-
pling fractions. Although τ for degree becomes large in a
small sampling fraction (see Fig. 2c), the similar feature
in Figure 2a eventually recovers as the sampling fraction
increases (see Fig. 2d). This result implies that the small
value of τ for degree can be attributed to the intrinsic
property of the local centrality, by which individual pres-
tige is sensitive to the random sampling due to the local
fluctuation of the network topology.

For comparison with the BA model, we consider real
networks, and observe some different results. In real net-
works, τ for betweenness becomes suppressed and is no
longer comparable to τ for closeness (see Fig. 3a). Here,
we present the case of the Los Alamos e-Print Archive
coauthorship network, although similar results are ob-
served in other real networks, including the Internet AS
and protein-protein interaction networks.

The suppressed τ for betweenness reflects the sensitiv-
ity of the betweenness measure to the network modularity.
Unlike random networks including the BA model, many
real networks have structural sub-units, namely modular
structures, that significantly affect the centrality measures
in unexpected ways in random networks. For example,
the presence of nodes with small degree and large be-
tweenness shown in Figure 3b indicates the existence of
loose connections between tightly-knit modules [22], such

that the nodes on the loose connections that bear a con-
siderable number of inter-modular communication paths
exhibit large betweenness centrality despite their small
degree. In this sense, during the random sampling, vio-
lating modularity in the networks can significantly alter
the betweenness-based node prestige, thereby lowering τ
for betweenness. One way to confirm this effect is to ob-
serve what happens if the modularity effect is reduced. To
discard the modularity effect, we sample only the nodes
with highly correlated degree and betweenness rather than
do random sampling, and calculate the corresponding τ5.
Under the reduced-modularity effect, we can identify the
range of the sampling fraction (in the Archive coauthor-
ship, �50%) in which τ for betweenness becomes compa-
rable to τ for closeness as in the BA model (see Figs. 3c
and 3d). This shows that the modularity effect is indeed
essential to the suppression of τ for betweenness.

Consequently, the τ for each centrality measure relies
on the sensitivity of the centrality measure to the sam-
pling. Indeed, a small τ for degree comes from the fact
that the ranks of degree suffer from their shuffling due to
the local fluctuation of topology during the sampling pro-
cess. Although it is based upon global information on the
networks, betweenness concerns the number of shortest
paths across a node itself, thus the rank can be sensitive
to the topological variation in the proximity of the node,
and especially to modular-level fluctuations. On the other
hand, closeness is relatively tolerant to such topological
fluctuations, and contributed to by the robust global in-
formation of the network, averaged path lengths outward
from a node. Therefore, the closeness-based rank order
possesses a larger τ than any other quantity, due to the
unique globality of the closeness being insensitive to the
sampling.

Because such a global characteristic of closeness is re-
sponsible for the large τ for closeness, the value of τ for
closeness can be suppressed if access to the hubs that bind
the network together globally is restricted in the sampling
process. To simplify this situation, we sample the nodes in
ascending order of their centrality measures, rather than
randomly as presented before. Figures 4a–4c display the
results gathered when nodes are selected in ascending or-
der of degree, and similar results are produced for be-
tweenness and closeness in the other cases. As discussed
above, the value of τ for closeness is no longer superior to
any other quantity. Surprisingly, we further identify that
in real networks, τ obtains its minimum value in an in-
termediate range of the sampling fraction, and thus has
a convex shape (see Fig. 4b). This directly indicates that
with small sampling fractions, if access to hubs is lim-
ited, an increase in the sampling fraction (i.e. more nodes
are sampled) can in fact decrease the sampling accuracy

5 We choose the nodes in ascending order of

∣
∣
∣
∣
∣

xi − 〈xi〉
√〈x2

i 〉 − 〈xi〉2
− yi − 〈yi〉

√〈y2
i 〉 − 〈yi〉2

∣
∣
∣
∣
∣
,

where xi, yi stand for the degree and betweenness of the ith
node, and 〈· · · 〉 is the average over all nodes.



P.-J. Kim and H. Jeong: Reliability of rank order in sampled networks 113

(d)(a)

(e)(b)

(f)(c)

Fig. 4. (a)–(c) Sampling under limited hub-accessibility. The
horizontal axis represents the sampling fraction in ascending
order of degree, while the vertical axis represents τ at each
sampling fraction, for (a) the BA model with 30 000 nodes and
average degree of 8; (b) the Archive coauthorship; and (c) a
random network given the same degree distribution as that of
the Archive coauthorship. Results similar to those shown in (b)
and (c) are also shown for other real networks. (d)–(f) Sampling
from randomly sampled networks. The horizontal axis for a
sampling fraction out of 100%-, 53%-, and 27%-sampled nodes
from the BA model with 30 000 nodes and average degree of 8,
and the vertical axis for τ at each sampling fraction. (d) τ for
degree. (e) τ for betweenness. (f) τ for closeness.

(small τ) without a gain in valuable information. To avoid
this type of error in the analysis of social networks, a suf-
ficient sampling size of social individuals must be assured
when access to the central leadership is restricted. Also, for
the study of small data sets in bioinformatics, the pres-
ence of hubs should be of concern, because if they are
not available, the ordinal information extracted from the
small data set is not reliable. This exotic behaviour from
real networks is essentially solely caused by the properties
of the degree distribution of real networks, rather than
by other structural properties embedded in real networks,
e.g. the modularity. Figure 4c exhibits the results for the
random networks given the same degree distribution as
that of the real networks [23], which produce a feature
similar to that shown in Figure 4b.

For predictive purposes, is it possible to presume the
value of τ for nodes sampled randomly from entire net-
works? In real situations, since the information available
to us is that of sampled networks rather than that of en-
tire networks, we can only evaluate the τ of the nodes
against a priori sampled networks, but not against the
entire networks, which are rarely achievable. Despite such
limitations, we can exploit the τ of the nodes sampled
from these sampled networks to approximate that from
the entire networks. In random sampling, since decreasing
the sampling fraction makes the network more homoge-
neous, with small degrees [13], it is expected that the τ
of the subset in randomly sampled nodes underestimates
that of the subset in the entire network with the same
sampling fraction. For the BA model, Figures 4d–4f es-
tablish the corresponding tendency, manifested especially
in low sampling fractions, which is consistently revealed
in the cases of other real networks only except for the
betweenness of the Internet AS6. In this regard, we can
use this underestimation to approximate the actual τ of
an arbitrary sampling fraction for the entire network by
providing its lower bound. For example, in the case of the
protein-protein interaction network, τ for the degree of
30% sampled nodes in our data is equal to 0.35, which
means that the τ for 30% sampled nodes in a complete
data set would be greater than 0.35 if the sampling method
is close to random node sampling. Likewise, for 30% sam-
pled nodes in the Archive coauthorship, τ for degree is
equal to 0.45, thereby indicating that τ would be larger
than 0.45 for the 30% sampled nodes in the complete data
set.

4 Conclusions

In summary, we have investigated the accuracy of order re-
lationships in sampled networks, and found that the prop-
erties of complex networks, such as degree heterogeneity
and structural modularity, are responsible for the vari-
ous results. The higher-ranking nodes in sampled networks
preserve their positions in the original networks more ro-
bustly than the lower-ranking nodes, and the closeness-
based order relationship gives the best measure for faith-
ful ordinal information in sampled networks. Interestingly,
we discovered that limiting the access to hubs during the
sampling can in fact decrease the accuracy of the sam-
pling as the sampling fraction increases. We emphasise
the role of hubs in characterising a sampled network, and
the effect of the perturbed scale of the network, to which
each centrality measure responds sensitively. Beyond these
analyses, a methodology providing the lower bound for
sampling accuracy is suggested. Our results can be help-
ful for understanding the properties of sampled networks,
especially for social and criminal networks, for which anal-
ysis suffers from various types of sampling error and other

6 For the betweenness of the Internet AS, the tendency be-
comes reversed such that τ of the subset in randomly sampled
nodes overestimates that of the subset in the entire network
with the same sampling fraction.
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limitations [8,12,24]. The sampling problems in complex
networks, including the detection of errors in power-law
statistics and the suggestion of useful sampling protocols,
are currently being explored [10,12,13].
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